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The reduction of the equations of direct control to a special canonical 
form is studied, in which a nonlinear function of the control unit 
enters into the system with coefficients zero and one. If there exist 
prime characteristic roots of the matrix of the coefficients of the 
initial system the method of reduction coincides with the method given 
in book [ 1 1, For the case of multiple characteristic roots of this 
matrix the order of the canonical system, equal to the power of the 
minimal polynomial of the original matrix. may be less than the order of 
the initial system. It will be shown that in the latter case, the stabil- 
ity of the original system does not always follow from the stability Of 
the canonical system of equations, although instability of the original 
system always follows from the instability of the canonical system. A 
method is presented for constructing, from the solutions of the canonical 
system, the solutions of the original system and conversely, from the 
solutions of the original system, for constructing the solutions of the 
canonical system. 

1. The components $ (RI of matrix A of dimension (n x n) may be de- 
termined as the numerator of the decomposition (hEa,,, - A)-’ into si@e 

fractions I2 1 

A, (h) = (A- Alp (A - h‘p. . . (h - A,)“a (ml -+ . . . +m,= ntfn) (12j 

1125 
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Here F(k) and C(h) are adjoint and reduced adjoint [ 2 3 matrices for 

tAEn a - A); Da_ l(x) is the greatest divisor of all minors of (R - 11th 
orde; of the matrix (AE - A); A(A) and A (At are the characteristic 
and minimal pol~nornials~~~ 1 of matrix A [ire. A (h) is the major in- 
variant multiplier of the characteristic matrix ;hE, a - A)] ; s is the 
number of distinct characteristic roots of matrix A. * 

The components 4y(‘) turn out to be linearly independent and different 
from zero and are completely determined by the matrix A. 

The components of the matrix A may be used for finding in practice the 
function of the matrix A. 

In particular, for the function eAt we have the relation 

A,(“) + _~$,(~)t + * . * + A,k(k’ ,,t”“-‘,,! 
k 

(1.5) 

In turn, functions of the matrix may be used for the integration of a 
system of linear differential equations with constant coefficients. 

III the present note the components of a matrix are used for the in- 
vestigation of a control system. 

2. The use of components of a matrix for the transformation of the 
equations of the theory of control. We consider a system of differential 

equations of the first order 

ra 

ci?k = &-a+ hkv tot fk = 4, . . ., n), o= 2 t-,x, (2.f) 
a=1 ‘%=I 

which we may rewrite in the form 

z = Bx + Hg, (a), CT= Rx (2.2) 

Here s and H are COlURIU UiStTfGes Of the ehIC?ntS %K and hk, rSSpt?Ct- 

ively. B is a square matrix of the coefficients bka of dimension (n x n), 

R is a row matrix of the elements ra. 

If in Equations (2.1) the quantity u represents an arbitrary fUnC- 
tion of time, then the solution for x may be written in the fora 

z = Pz* + \ eB(‘--‘)H~ {o (z)} d,x (2.3) 

Analogous to (1.5) the functik eBt has the form 
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(2.4) 

The quantities A,, . . . , As are distinct characteristic roots of 
matrix B 

’ %, n - B 1 = (h - ),I)~‘ (A - h2)n* . . . (A - hJns (2.5) 

Consequently, relation (2.3) may be given the form 

z = ,nt x0+ UE (2.6) 

where U is a rectangular (n x a) matrix, the columns of which are pro- 
ducts of components of matrix B by column H 

u = 11 B,(“)H I/ = 11 B1(l)H, Bz(l)H, . . ., Bms(‘)H 11 

and $ is a complicated column matrix 

j(l)0 

(2.7) 

(2.8) 

the elements of which are the columns 

El(k)0 1 

E(k).= . . . = t 

E 

s 
ehk(t--s) . . . 

‘7 (0 (z)} dr 

nlk 

(kP 0 (t - r) 
mk-1 (k=l, . . . . s) (2.9) 

(mk-l)! 1 

BY immediate differentiation it is possible to convince oneself that 
5” is a particular solution of the system of equations 

El(k) = h,El’“’ + ‘p (a) 

k2(k’ zx A,@’ + El(k) (k = 1, . . . , s) 
. . . . . . . . . . . 

i_ ,(k) (Jr) 
h 

z AkErn k 4-Eii& 

the matrix form of which is 

f= AE + W ((~1 

where 

A(” 0 . . . 0 

A= 
0 A@’ . . . 0 

(rnXrn) . . . . . . . . . ’ 
0 0 . . . A@‘, 

G(1) 

G = G("' 
(rnX1) . . . 

G(8) 

(2.10) 

(2.11) 
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1 

0 
G(k) = 

(rnkX1) ..* 

0 

depends on m arbitrary constants 

Substituting 4” from (2.12) into (2.6), 

The general solution of Equations (2.11) 

g = e”lEo + g 

(Ii = 1, . . . , S) 

we obtain 

(2.12) 

(2.13) 

Equation (2. 12) by itself represents the relation, with the aid of 

which for arbitrary value u the solutions of Equations (2.1) are obtained 

from the solutions of Equations (2.10). The column x,, represents by it- 

self the column of initial values of the variables zk, and the column co 

is the column of arbitrary constants. In choosing the values of these 
constants we shall require that the product RX be not dependent on x,, 

and co. Then we have 

RX = RUE, ReB%, = RU&, (2.14) 

If the product RU is denoted by Q, 

Q = iI qlcl)v q2? . . . , q,,l,(s) II . Q, 
(k) = RB,(k)H (2.15) 

then Equations (2.14) may be given in the form 

Rx = Q5, ReBfzO = Qe”*&, (2.18) 

In the last of these equations the expression for e Bt takes the form 

(2.4). It is possible to show that the expression for e *’ will have the 

analogous form 

,bf = $, [nl(k) + &(liJt + . . . + Am:) (,~~~~)!] ehkt 
(2.17) 

and the number of components of I$,‘~’ will equal the number of components 
‘of ByCk) 

Hence the second equation (2.16) is equivalent to the m equations 
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(2.18) 

with l unknowns [lo’1’, t2o(1), . . . , 5, o(sfe The rows of the determinant, 

composed of the coefficients of these u&owns, are the products of the 

rows of Q with the components 
5 

(k), Because these components are linear- 
ly independent, this determinant is different from zero and the system 
(2.18) has a unique solution which we denote, with the aid of matrix V 
of dimension (D x n), in the following form: 

(2.19) 

Here, for brevity in writing, the row matrices are written in the form 
of products of rows Q and R and the components of the corresponding 
matrices. Thus, if .$, = Vxe, then Rr = Q[ and the solution of Equations 

(2.2) with the aid of the relation 

5 = [t?Bf - UeA’VI %J + U$ (2.20) 

may be obtained from the solution of the equations 

t = AE 4 w (a a=Qi (2.21) 

the form of which bY analogy with papers of Lnr’e, Letov, Troitzkii may 
be called the canonical form of the equations of control systems. The 
difference of this form of the equations from the canonical form of the 
equations in the papers of the authors mentioned consists in that the 
order of the system of these equations coincides with the number of com- 

ponents of matrix B, and this number may be equal to the order of the 
original system (2.2) only in the case when the minimal polynomial co- 
incides with the characteristic polynomial of matrix B. This circumstance 
occurs in particular when among the characteristic roots of matrix B none 
are multiple. 

3. Properties of matrices U and V. Having differentiated the second 
equation of (2.16) with respect to time we obtain the equation 

ReB’Bzo. = Qe” A&, (3.1) 

which is analogous to Equation (2.16) and, ConsequentlY. A[,, must 
satisfy the equation At, = VBrq. Substituting Vxu instead of to into 
this equation we have 

AVx@ = VExO or AV = VB (3.2) 

since this must be fulfilled for an arbitrary column x,,. Also it is 
easily seen that 
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eBfH = UeRfG 13.3) 

Differentiating this equality with respect to time we obtain 

BeB’H = U A&G or (BU - U A) e*‘G = 0 (3.4) 

the latter being based on (3.3). 

Owing to the fact that c A t G represents by itself a column of linearly 
independent functions 

t+, t&t, . . . , 
m -1 7. t 

t6 es (3.5) 

the equality (3.4) is correct only when BU = Uh. Assuming t = 0 in (3.3) 
we have H = UG. 

BY definition, Q = RU: multiplying (3.3) by R, we Obtain the equation 

ReBfH = Q&G (3.6) 

8nalogous to Equation (2.16); consequently 

G - VH (3.7) 

Replacing [,, in the second equation of (2.16) by Vx,,, we have 

Rests0 = QehfVzo (3.6) 

Taking into 8MOUnt that (3.8) must be satisfied for 8rbitr8rY column 

re and arbitrary time t > 0, we obtain 

ReBf = Q&V, R = QV (3.9) 

blultiplying the equslity (3.3) on the left by the matrix V we have 

Ve*“H = VU&G 

Since from the equality (3.2) follows A% = VcBt then en% = VU&G e 
or &G = W&G, which is possible only when 

VU=E,, (3.10) 

Finally, if we multiply U on the right by V and square this product 

we then obtain 

(UV)Z = UVUV = UE,, ,V = UV (3.11) 

Hence it follows that the product UV is an idempotent matrix [ 2 1 for 
which the relations 

BUV = U hV = U\‘R (3.12) 

hold. 
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Summing up what has been said, we have 

PH = UPC 

ReB’ = Q&V: 

BU = U A, UG = H 

AV = VB, QV = R 
Q = RU, VU = E, m VH = G . 

(UV)Z = uv, RUV = R, ’ UVH = H 

4. Certain theorems concerning control systems with multiple roots. 

We rewrite the systems (2. 2) and (2.21) in the form 

2 = Bz + Hq (RX) (4-i) 

i = Ai + Gq (QE) (4.2) 

According to what has been said above, in order to obtain a solution 

of Equation (4.1) with initial condition X(O) = x0, it is possible first 

to find a solution for 5 in Equations (4.2) with initial condition ((0) = 

VX,, and then, in correspondence with Formulas (2.20) and (3.2), to con- 

struct the solution of Equations (4.1) 

x = (E, n - UV) eBtxO + ut (4.3) 

If it is necessary to construct a solution for 5 in Equation (4.2) 

with initial condition c(O) = [,,, then it is possible, choosing the 

column x0 to satisfy the relation co = Vxe, to have a solution for x in 

Equation (4.1) with initial condition X(O) = x,, and then by means of the 

formula t = Vx to construct a solution of Equation (4.2). In fact, if 

c = Vx is substituted into Equation (4.2) 

V;i - AVx - Gq (QVx) = 0 (4.4) 

and account is taken of Equations (3.2), (3.71, (3.9) then it is possible 

to construct the identity 

V [j_ - B1: - Hq (Rz)] = 0 (4.5) 

since x is a solution of Equation (4. 1). 

We pass in Equation (4.3) to the analysis of the expression in 

parentheses. If the characteristic polynomial of matrix B coincides with 

the minimal polynomial of matrix B, then I = n and 

This follows from the fact that U and V will in this case be (n x n) 
matrices and by virtue of the equality (3.10) 

VU = E,., = UV 
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But if the degree of the minimal polynomial is less than the degree 
of the characteristic polynomial (RI < n), which is possible only for the 
case of multiple characteristic roots of the matrix B. then 

E 7l.n - 1:v + 0 

since in this inequality the matrix En n has rank n, but the rank of the 

product UV by virtue of Sylvester’s thiorem would be equal to m < n. 

We consider in detail the second case and prove for it the following 

theorems: 

Theorem f. If the solution of Equation (4.2) for 6 is unstable, the? 

the solution of Equation (4.1) for x is also unstable. 

Theorem 2. If the solution of Equation (4. 2) for 5 is stable and if 

the multiplicity of the roots with positive real parts in the minimal 

polynomial of matrix B is equal to the multiplicity of the roots with 

positive real parts in the characteristic polynomial of matrix B, then 

the solution of Equation (4.1) for x is stable, but if smaller, then un- 

stable. 

The proof of the first theorem follows from the fact that the solution 

for e is obtained from the solution for x with the aid of the linear 

transformation 4 = Vr. Whence it is seen that in order for the solution 

for 5 to be unstable it is necessary for the solution for x to be also 

unstable. It is evident that the first theorem will be correct also for 

II= n. 

For the proof of the second theorem we shall consider -that matrix B 

in the initial solution has Jordan normal form (with the aid of a linear 

nonsingular transformation of the unknowns it is always possible to re- 

duce it to this form). Each such matrix can always be decomposed into a 

number of blocks, equal in number to the distinct roots of the character- 

istic polynomial 

B(1) 

B= . . . . ..I 

0 . . B(S) 

where the dimension of a block is equal to the multiplicity of the root 
in the characteristic polynomial. As far as the matrix 1\ is concerned, it 

already has such a block form where the dimension of the block A(k) in 

the matrix I\ is equal to the multiplicity of the root in the minimal 

polynomial. We decompose the matrices R. H and I into blocks so that the 

products RB. BH, BZ have meaning, and matrices Q, G and 5 by their struc- 

ture already have this form. 
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Then it is possible to show that the matrices Il. V and UV have quasi- 
diagonal form 

u(l) . . . 0 v(1) . . . 0 u(W1) . . . 0 ’ 
u= . . . . . . , v= . . . . . , uv= . . . . . . . . 

0 . . . u(s) 0 . . . VW 0 . . . uwvw 

Here the blocks U(‘l have dimension (“k X rk), and the blocks Vtk) 

have dimension (ak x nk); the product UV is formed by the multiplication 
rule of block matrices. Here the rank of the block U(klV(k) is equal to 

mk’ Since 

(E %. n1 
_ +)$I)) ,n(l)t . . _ 0 

(E,, ll --V)eB’= . . . . . . . . . . . . . . . . . . . . . . . . . . 

0 . . . (Ens, n, - U%‘(‘)) eBCSjt 

then having decomposed x,, also into block form, we obtain 

(En,, n1 
_ ~(0~0)) $‘)tO(i) 

(En*, -UV)e%,= . . . . . . . . . . . . . . 

(Ens 1 ng 
_u($M) ,B(S’t zO(@ 

We consider the kth block 

(E 
nkvnk 

_ u(k,V’k’) ,J+)t ,.(k) 

For arbitrary x,,(~) this block may equal zero only if 

E 
nk.nk 

= uW~‘k) 

which is possible only for the case when the multiplicity of the root of 
the minimal polynomial coincides with the multiplicity of the root in 
the characteristic polynomial. But if this condition is not fulfilled 

then such an equality is not possible. Since the function exp Xkt is a 

scalar multiplier of this block-column, then for Re xk > 0 the magnitude 

of the elements of the block-column increase without bound as t + 00 and 
this also is evidence of instability, which was to be proved. 
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